Shri Shankaracharya Institute of Professional Management \& Technology, Raipur Department of Civil Engineering Class Test - I Session: JULY - DEC, 2021 Month - OCTOBER Semester - 5th Subject - STRUCTURAL ENGG. DESIGN - I, Code - C020511(020) Time Allowed: 2 hrs . Max Marks: 40 Note: - Part A is Compulsory in each section. Attempt any two from Part B, C \& D. Use of IS456:2000 code is only permitted. Assume suitable data, if required, and mention it clearly. Draw neat sketches wherever required.				
No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
SECTION I				
1A.	Explain modular ratio. What will be the modular ratio for M30 concrete? Give factor of safety for concrete and steel in W.S.M.	[4]	Understand	CO 1
1 B.	A RCC beam 200 mm wide has an effective depth of 350 mm . The permissible stresses in concrete and steel are $5 \mathrm{~N} / \mathrm{mm}^{2}$ and $230 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Find the depth of neutral axis, area of steel and percentage of steel, using working stress method.	[8]	Analyze	$\mathrm{CO1}$
1C.	Find the tension reinforcement required for a beam of size 230X500 mm (effective depth) and effective cover to steel is 50 mm subjected to a B.M under working load is $80 \mathrm{KN}-\mathrm{m}$. Use W.S.M	[8]	Analyze	CO1
1 D.	Explain Various points on stress-strain curve for steel material.	[8]	Analyze	CO1
SECTION II				
2 A.	Why steel is used as reinforcement in RCC? What are conditions in which we design a doubly reinforced beam.	[4]	Understand	CO 1
2 B .	Design a singly reinforced beam to carry a ultimate load of $22500 \mathrm{~N} / \mathrm{m}$. The clear span of the beam is 5.5 meter. The bearing at each end is 300 mm . Use WSM.	[8]	Analyze	CO1
	A beam of 300X600 mm overall depth and reinforced with four bars of 25 mm on tension side and three bars of 22 mm on compression side. The bar is at $50 \mathrm{~mm} \& 30 \mathrm{~mm}$ to the center of steel respectively from tension side and compression side of the beam. Calculate the moment of resistance of beam if M20 concrete and Fe415 steel used.	[8]	Analyze	CO1
2D.	Determine the moment of resistance of singly reinforced beam 180 mm wide and 300 deep to the center of reinforcement, if the stresses in steel and concrete are not to exceed $140 \mathrm{~N} / \mathrm{mm}^{2}$ and $5 \mathrm{~N} / \mathrm{mm}^{2}$. The reinforcement consists of 4 nos. of 16 mm dia. Bar. Take $m=18$. If the effective span of the beam is 5 m , find the maximum load the beam can carry, inclusive of its own weight. Use WSM.	[8]	Analyze	CO1

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
Part I				
A.	Define Pavement uneveness.	[4]	Understand	CO1
B.	Explain the importance of Second Twenty Year Road Plan in Highway planning of our country.	[8]	Understand	CO1
C.	Explain the following: 1)Kerb 2)Right of Way	[8]	Understand	CO1
D.	Derive an expression for analysis of super elevation.	[8]	Analyse	CO1
Part II				
- A .	What do you mean by cross slope?	[4]	Understand	CO1
B.	What do you mean by Stopping Sight Distance with diagram	[8]	Understand	CO1
C.	Explain Overtaking Sight Distance with Diagram	[8]	Understand	CO1
D.	Write a brief note on PIEV theory.	[8]	Understand	CO1
	Shri Shankaracharya Institute of Professional Management Department of Civil Engineering Online Class Test - I Session: July-December, 2021 Month Semester - 5th Subject -T.E Code - C020514(020) Time Allowed: 2 hrs. Max Marks: 40 Note:- In Part I \& II, Question A is compulsory and attempt an	\& Techn - Noven two from	ology ber $n B, C \& D$	
No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
Part I				
A.	Define Pavement uneveness.	[4]	Understand	CO1
B.	Explain the importance of Second Twenty Year Road Plan in Highway planning of our country.	[8]	Understand	CO 1
C.	Explain the following: 1)Kerb 2)Right of Way	[8]	Understand	CO 1
D.	Derive an expression for analysis of super elevation.	[8]	Analyse	CO 1
Part II				
A.	What do you mean by cross slope?	[4]	Understand	CO1
B.	What do you mean by Stopping Sight Distance with diagram	[8]	Understand	CO1
C.	Explain Overtaking Sight Distance with Diagram	[8]	Understand	CO1
D.	Write a brief note on PIEV theory.	[8]	Understand	CO1

Shri Shankaracharya Institute of Professional Management \& Technology, Raipur Department of Civil Engineering
Online Class Test - I Session: July-Dec, 2021 Month - October Semester $-5^{\text {th }} \quad$ Subject - Geotech Engineering \quad Sub. Code - C020513(020) Time Allowed: $\mathbf{2}$ hrs. Max Marks: 40
Note: - In Part I \& II, Question A is compulsory and attempt any two from B, C \& D.

Q.	Questions	Marks	Levels of Bloom's taxonomy	CO's
No.				

Part I

A.	Explain the followings: (i) Activity of clay (ii) Consistency Index	[4]	Understand	CO1
B.	Discuss about the Atterberg's Limit or consistency limit.	[8]	Understand	CO1
C.	Explain IS Soil Classification system. Mention the equation and significance of A-line in plasticity chart.	$[8]$	Understand	CO1
D.	Derive the functional relationship of followings: (i) Relation between $\gamma, \mathrm{G}, \mathrm{e}$, and S. (ii) Relation between $\gamma_{\mathrm{d}, \mathrm{G}, \mathrm{w}, \mathrm{n}_{\mathrm{a}} .}$	$[8]$	Apply	$\mathrm{CO1}$

Part II

A.	(i) A soil has a bulk unit weight of $22 \mathrm{kN} / \mathrm{m}^{3}$ and water content of 11%. Determine the dry density.	$[4]$	Evaluate	CO1
B.	A soil sample has a porosity of 45%. The specific gravity of solid is 2.65. Calculate the following: (i) Void Ratio (ii) Dry Density (iii) Unit weight if soil is 70\% saturated (iv) Unit weight if soil is fully saturated	$[8]$	Evaluate	CO1
C.	The mass specific gravity of a soil is equal to 1.68 . The specific gravity of solid is 2.65. Determine the void ratio under the assumptions that the soil is perfectly dry. What would be the void ratio if the sample is assumed to have water content of 12%.	$[8]$	Evaluate	$\mathrm{CO1}$
D.	The void ratio and specific gravity of a sample of clay are 0.73 and 2.7 respectively. If the voids are 92\% saturated, find the bulk density, dry density, and water content. What would be the water content for complete saturation, if the void ratio remains same.	$[8]$	Evaluate	$\mathrm{CO1}$

SSIPMTA

Department of Civil Engineering
Class Test - I Session: July-December, 2021 Month - October
Semester - 5th Subject-HYDROLOGY \&WATER RESOURCES ENGINEERING
Code - C020512 (020) Time Allowed: 2 hrs. Max Marks: 40
Note: -Part A is compulsory in each section. Attempt any two from part B, C and D. Assume suitable data, if required, and mention it clearly.

Q. No.	Questions	Marks	Levels of Bloom's taxonomy	CO's
Section I				
$\leqslant 1$	Explain the following with help of neat sketch i. Warm front precipitation ii. Cold front precipitation	4	Understand	CO1
B	Write Short notes on i. Location of Rain Gauge Station ii. Measurement of Precipitation iii. Forms of Precipitation	8	Understand	CO1
C	A sub-basin has six number of rain gauge. Annual rainfall recorded by the rain gauges is given below. Considering 10% error in estimation of mean annual rainfall calculates optimum number of rain gauges required for the sub-basin and check if the present network is sufficient.	8	Understand	$\mathrm{CO1}$
	Rain Gauge Name Annual Rainfall (In cm)			
	A 110.3			
	B $\quad 82.8$			
	C\|r ${ }^{\text {C }}$ (98.8			
	D $\quad 136.7$			
	E 18			
	F 102.9			
D	Give the methods with corresponding formulae to find mean precipitation over a basin	8	Understand	CO1

Section II

A	Precipitation Station X was inoperative for part of a month during which a storm occurred. The respective storm totals at three surrounding stations $A, B \& C$ were $107,89 \& 122 \mathrm{~mm}$. The normal annual precipitation amount of station $\mathrm{X}, \mathrm{A}, \mathrm{B} \& \mathrm{C}$ are respectively $978,1120,935 \& 1200 \mathrm{~mm}$. Estimate the storm precipitation for station X .	4	Analyze	CO1
B	Figure 1 represents a catchment area with the precipitation observed in a year. Calculate the mean precipitation by Thiessen polygon method and check the result roughly by arithmetic mean method Fig. 1 Catchment Area	8	Analyze	$\mathrm{CO1}$
C	The Isohyets for annual rainfall over a catchment were drawn. The areas of strips between the isohyets are indicated below in table. Find the average depth of annual precipitation over the basin.	8	Analyze	CO1
D	Describe with a neat sketch the construction and use of Float type recording Gauge.	8	Analyze	CO1

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Questions	Marks	Levels of Bloom's taxonomy	COs
Unit-1				
A.	I. Differentiate between static and kinematic indeterminacy. II. Discuss Degree of freedom. III. Discuss the Relation between Loading, SF, BM, Slope and Deflection. IV. Discuss Moment Curvature Relationship. V. Discuss the methods of Structural Analysis.	[10]	Understand	$\begin{aligned} & \mathrm{CO} 1 \\ & \mathrm{CO} 2 \end{aligned}$
B	Determine the degree of Static and kinematic indeterminacy of the following structures: (i) (ii) (iii)	[10]	Analyse	CO1
C	Analyze the continuous beam as shown in figure, using three moment equation, Draw shear force and Bending moment diagram, if support B sinks by 5 mm under the given load. $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{I}=9300 \mathrm{~cm}^{4}$.	[10]	Analyse	CO1
() D	Analyze the continuous beam as shown in figure, using three moment equation and if support B sinks by 10 mm under the given load. $\mathrm{E}=15 \mathrm{kN} / \mathrm{mm}^{2}$ and $\mathrm{I}=4 \times 10^{9} \mathrm{~mm}^{4} \quad$ Draw shear force and Bending moment diagram.	[10]	Analyse	CO1
E	Analyze the continuous beam as shown in figure, using three moment equation and Draw the SFD and BMD. Take EI is constant.	[10]	Analyse	CO1
F	Analyze the continuous beam ABCD as Shown in fig. if support C settles down by 5 mm . Take $\mathrm{E}=15 \mathrm{kN} / \mathrm{mm}^{2}$. Moment of inertia is constant throughout and is equal to $5 \times 10^{9} \mathrm{~mm}^{4}$.	[10]	Analyze	CO1

